Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies
S. Saeed Mostafavi Tehrani and
Robert A. Taylor
Applied Energy, 2016, vol. 179, issue C, 698-715
Abstract:
Solar irradiation is intermittent, but concentrated solar thermal (CST) plants are typically designed and analyzed solely based on their steady design point. Unlike coal power plants, however, CST plants frequently experience thermal loads well above and below their rated design point, leading to off-design operation for much of the operational year. Importantly, if a latent heat thermal energy storage (LHTES) system is employed, the receiver inlet temperature can vary under these conditions. To date, there is a clear lack of knowledge for how to handle off-design conditions in terms of developing appropriate control strategies to maximize the receiver thermal output and its operational region. In this study, a thermal model was developed and validated that is suitable for design/off-design performance analyses of molten salt cavity receivers in both steady state and transient conditions. The study investigated two control strategies – a fixed receiver flow rate (FF) and fixed receiver outlet temperature (FT) – for their off-design performance in each of two off-design operational modes (storage and non-storage). Solar field utilization (SFU) is variable in non-storage mode, but in the storage mode, it is whether variable or fixed at design point (SFU=1). The feasible operating region in this study refers to the zone restricted by maximum allowable operational parameters defined based on design point analysis, mainly maximum receiver outlet temperature, maximum flow rate, and maximum receiver surface temperature.
Keywords: Concentrated solar power; Tower; Off-design; Energy and exergy analysis; Control strategies (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916309734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:179:y:2016:i:c:p:698-715
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.07.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().