Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model
Linfeng Zheng,
Lei Zhang,
Jianguo Zhu,
Guoxiu Wang and
Jiuchun Jiang
Applied Energy, 2016, vol. 180, issue C, 424-434
Abstract:
Lithium-ion batteries have been widely used as enabling energy storage in many industrial fields. Accurate modeling and state estimation play fundamental roles in ensuring safe, reliable and efficient operation of lithium-ion battery systems. A physics-based electrochemical model (EM) is highly desirable for its inherent ability to push batteries to operate at their physical limits. For state-of-charge (SOC) estimation, the continuous capacity fade and resistance deterioration are more prone to erroneous estimation results. In this paper, trinal proportional-integral (PI) observers with a reduced physics-based EM are proposed to simultaneously estimate SOC, capacity and resistance for lithium-ion batteries. Firstly, a numerical solution for the employed model is derived. PI observers are then developed to realize the co-estimation of battery SOC, capacity and resistance. The moving-window ampere-hour counting technique and the iteration-approaching method are also incorporated for the estimation accuracy improvement. The robustness of the proposed approach against erroneous initial values, different battery cell aging levels and ambient temperatures is systematically evaluated, and the experimental results verify the effectiveness of the proposed method.
Keywords: Lithium-ion battery electrochemical model; State of charge (SOC) estimation; Battery capacity estimation; Battery resistance estimation; Battery management system (BMS) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916311035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:180:y:2016:i:c:p:424-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.08.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().