EconPapers    
Economics at your fingertips  
 

Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends

Murari Mohon Roy, Jorge Calder, Wilson Wang, Arvind Mangad and Fernando Cezar Mariano Diniz

Applied Energy, 2016, vol. 180, issue C, 52-65

Abstract: This study investigated the emissions of a modern (Tier 4) 4-cylinder direct injection (DI) diesel engine at idling with no load conditions. Three idling speeds: low (800rpm), medium (1000rpm) and high (1200rpm), respectively are considered. Two additives (5% and 15% by volume), ethanol and diethyl ether (DEE) were mixed with biodiesel-diesel blends B20, B50 and B100. B100 was produced from canola oil. Engine was tested from cold start to warm up in real world conditions. Emissions analysis was conducted for carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), and unburned hydrocarbons (HC). Investigation results show that, CO and NOx emissions decrease, but HC emissions increase after warm-up than cold start. Diesel-biodiesel blends with additives produce lower CO emissions then neat diesel; ethanol and DEE additives can reduce NOx emissions in diesel-biodiesel blends, and increasing biodiesel content reduced HC emissions.

Keywords: Diesel engine; Biodiesel; Additives; Ethanol and DEE; Emissions; Idling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916310315
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:180:y:2016:i:c:p:52-65

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.07.090

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:52-65