Comparing demand response and battery storage to optimize self-consumption in PV systems
Guido Lorenzi and
Carlos Augusto Santos Silva
Applied Energy, 2016, vol. 180, issue C, 524-535
Abstract:
The paper examines and compares the potential of storage in batteries versus demand response strategies for electricity bill reduction in the residential sector, in the context of the new trend of installing PV systems for self-consumption. The performances of the two methodologies are investigated by applying them to the data of a real household which owns a small solar photovoltaic installation. The benefits of storage and demand response are evaluated through an optimization analysis with a linear programming algorithm. The simulations are carried out both for real market prices of the equipment and for reduced ones, to simulate the case of strong technological development and the corresponding price decrease in the coming years. The electricity pricing scheme is a dual tariff regime modeled according to the Portuguese current rules. The results suggest that at the moment, demand response should be preferred with the current market prices of the hardware. However, a significant decrease in the batteries price can make storage an interesting alternative, especially for the cases in which demand response is not easily applicable.
Keywords: Self-consumption; Linear programming; Demand response; Battery storage; PV integration (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631042X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:180:y:2016:i:c:p:524-535
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.07.103
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().