EconPapers    
Economics at your fingertips  
 

Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process

Bin Zhang, Jiaqiang E, Jinke Gong, Wenhua Yuan, Wei Zuo, Yu Li and Jun Fu

Applied Energy, 2016, vol. 181, issue C, 14-28

Abstract: In our previous works, the diesel particulate filter (DPF) using a new composite regeneration mode by coupling microwave and ceria-manganese base catalysts is verified as an effective way to reduce the particulate matter emission of the diesel engine. In order to improve the overall performance of this DPF, its multidisciplinary design optimization (MDO) model is established based on objective functions such as pressure drop, regeneration performance, microwave energy consumption, and thermal shock resistance. Then, the DPF is optimized by using MDO method based on adaptive mutative scale chaos optimization algorithm. The optimization results show that with the help of MDO, DPF’s pressure drop is decreased by 14.5%, regeneration efficiency is increased by 17.3%, microwave energy consumption is decreased by 17.6%, and thermal deformation is decreased by 25.3%. The optimization results are also verified by experiments, and the experimental results indicate that the optimized DPF has larger filtration efficiency, better emission performance and regeneration performance, smaller pressure drop, lower wall temperature and temperature gradient, and lower microwave energy consumption.

Keywords: Diesel particulate filter; Multidisciplinary design optimization; Adaptive mutative scale chaos optimization algorithm; Composite regeneration; Microwave energy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916311382
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:181:y:2016:i:c:p:14-28

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.051

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:14-28