Characterization of granular phase change materials for thermal energy storage applications in fluidized beds
M.A. Izquierdo-Barrientos,
C. Sobrino,
J.A. Almendros-Ibáñez,
C. Barreneche,
N. Ellis and
L.F. Cabeza
Applied Energy, 2016, vol. 181, issue C, 310-321
Abstract:
This work investigates commercially available granular phase change materials (PCMs) with different transition temperatures for the use of thermal-energy storage systems in fluidized beds. The hydrodynamic characteristics of granular PCMs were tested in cylindrical-3D and planar-2D fluidized beds. The density, particle size distribution and angle of repose were measured for various PCM materials. Further attrition studies were conducted with changes in particle surface from abrasion, which were characterized using a Scanning Electron Microscope (SEM). The results indicate that some materials with smaller particle size and thinner supporting structure can lose the paraffin during the fluidization process, when paraffin is in a liquid state. As a consequence, the particles agglomerate, and the bed defluidizes. For all of the tested materials, only GR50 (with a transition temperature of 50°C) properly fluidizes when the paraffin is in the liquid state and has shown to endure >75h of continuous operation and 15 melting-solidification cycles in a fluidized bed. Additional differential scanning calorimetry (DSC) measurements of the cycled particles did not show a decrease in energy storage capacity of the granular PCM, which corroborates that there is no loss of material after >75h of fluidization.
Keywords: PCM; Thermal energy storage; Fluidized beds; Angle of repose; DSC (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916311680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:181:y:2016:i:c:p:310-321
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.08.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().