EconPapers    
Economics at your fingertips  
 

The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries

Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng and L. Wei

Applied Energy, 2016, vol. 182, issue C, 204-209

Abstract: The objective of this work is to understand and identify key design parameters that influence the battery performance of iron-chromium redox flow batteries (ICRFBs). The investigated parameters include the membrane thickness, electrode compression ratio, electrode pretreatment and catalyst loading. Results show that: (i) with a thin NR-211 membrane and a high electrode compression ratio of 62.5%, the operating current density of the ICRFB can reach as high as 480mAcm−2 at an energy efficiency of higher than 80%; (ii) the bismuth catalyst loading has insignificant effect on the battery performance in the range of 0.52–10.45mgcm−2; (iii) the moderately oxidative thermal pretreatment of the electrode improves the energy efficiency compared to the as-received electrode while the electrode prepared with a harsh pretreatment deteriorates the battery performance; and (iv) for the present ICRFBs operating at both 25°C and 65°C, the dominant loss is identified to be ohmic loss rather than kinetics loss.

Keywords: Flow batteries; Iron-chromium redox flow batteries; Battery performance; Energy efficiency; Energy storage (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916312351
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:182:y:2016:i:c:p:204-209

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.135

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:204-209