EconPapers    
Economics at your fingertips  
 

A real-time decision model for industrial load management in a smart grid

Mengmeng Yu, Renzhi Lu and Seung Ho Hong

Applied Energy, 2016, vol. 183, issue C, 1488-1497

Abstract: The potential impacts of evolving industrial load management into demand response (DR) programs have been widely acknowledged. This paper proposes a real-time decision model for the load management of an industrial manufacturing process in the face of ever-changing real-time prices (RTPs). Due to the inherent dependence between consecutive tasks in a manufacturing process, the decision model must take future load management into consideration. The challenge lies in the uncertainty that future RTPs cannot be known in advance. In view of this, robust optimization was adopted to deal with future price uncertainties, such that the proposed model is able to make timely decisions for industrial load control when receiving the RTP for the current time slot, while considering load scheduling in future time slots. The case study was conducted on a steel powder manufacturing process; simulation results validated the effectiveness of the proposed real-time decision approach from various perspectives.

Keywords: Industrial manufacturing process; Real-time price; Timely decision; Robust optimization; Demand response (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631323X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:1488-1497

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.021

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1488-1497