EconPapers    
Economics at your fingertips  
 

A simplified model for heat extraction by circulating fluid through a closed-loop multiple-fracture enhanced geothermal system

Bisheng Wu, Xi Zhang, Robert G. Jeffrey, Andrew P. Bunger and Shanpo Jia

Applied Energy, 2016, vol. 183, issue C, 1664-1681

Abstract: Multiple hydraulic fractures have been proposed for improving the performance of an enhanced geothermal system (EGS) by providing conductive flow pathways and increased contact area between flowing fluid and surrounding rock formation. Use of more fractures incurs a higher drilling and hydraulic fracturing cost, but the additional cost can be offset by improved operation performance of an EGS. In this paper, a model is presented for efficiently predicting the output temperature so as to optimize the number of fractures and fracture spacing to maximize the EGS lifetime under a constant circulation rate. This optimal spacing is shown to arise due to the interplay among number of fractures, fracture spacing, well depth, and the pre-existing geothermal gradient. Specifically, under a typical geothermal gradient associated with EGS for a 5km total vertical depth of the well, the number of fractures N and the equal fracture spacing d have optimal values: 6⩽N⩽13 and 30m⩽d⩽90m. In addition, the semi-analytical solution method presented is effective and efficient in computation and, for this reason, is useful for optimizing the design of a geothermal reservoir with multiple layers at equal or non-equal spacing.

Keywords: Enhanced geothermal system; Multiple parallel fractures; Semi-analytical solutions; Runge-Kutta method; Scaling analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916314222
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:1664-1681

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.113

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1664-1681