EconPapers    
Economics at your fingertips  
 

Automatic detection of solar photovoltaic arrays in high resolution aerial imagery

Jordan M. Malof, Kyle Bradbury, Leslie M. Collins and Richard Newell

Applied Energy, 2016, vol. 183, issue C, 229-240

Abstract: The quantity of small scale solar photovoltaic (PV) arrays in the United States has grown rapidly in recent years. As a result, there is substantial interest in high quality information about the quantity, power capacity, and energy generated by such arrays, including at a high spatial resolution (e.g., cities, counties, or other small regions). Unfortunately, existing methods for obtaining this information, such as surveys and utility interconnection filings, are limited in their completeness and spatial resolution. This work presents a computer algorithm that automatically detects PV panels using very high resolution color satellite imagery. The approach potentially offers a fast, scalable method for obtaining accurate information on PV array location and size, and at much higher spatial resolutions than are currently available. The method is validated using a very large (135km2) collection of publicly available (Bradbury et al., 2016) aerial imagery, with over 2700 human annotated PV array locations. The results demonstrate the algorithm is highly effective on a per-pixel basis. It is likewise effective at object-level PV array detection, but with significant potential for improvement in estimating the precise shape/size of the PV arrays. These results are the first of their kind for the detection of solar PV in aerial imagery, demonstrating the feasibility of the approach and establishing a baseline performance for future investigations.

Keywords: Solar energy; Detection; Object recognition; Satellite imagery; Photovoltaic; Energy information (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313009
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:229-240

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.191

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:229-240