EconPapers    
Economics at your fingertips  
 

The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision

Sebastian Rauner, Marcus Eichhorn and Daniela Thrän

Applied Energy, 2016, vol. 184, issue C, 1038-1050

Abstract: The spatial dimension of the transition to a decarbonized power system becomes increasingly apparent with more than 1.5million renewable energy sources of electricity (RESE) plants operating all over Germany. The information regarding the spatial distribution of RES-E generation and power demand is still divers and not yet systematically used for the strategic planning of the energy transition and energy system modelling. The objective of this study is therefore to analyse the current power demand and RES-E supply spatially highly explicit with regard to their local interplay, annual balances and the share of volatile to flexible RES-E. This is achieved through the development and implementation of a general framework to analyse spatial patterns of the power system at different scales. The area of study is the Federal State of Germany, with the assessment of different spatial resolution ranging from federal state to community level. The resulting patterns are evaluated for their statistical significance through a hot spot analysis, followed by a correlation analysis to find possible reasons for their formation. The study shows a spatial dissonance between power demand and RES-E supply. This suggests that the design of the policy framework, focused on the levelized cost of electricity, led to a spatial distribution not oriented on local power demand but rather on economic optimality for the single power plant owner. By additionally differentiating between the RES-E technologies in terms of their intermittency characteristics, conclusions on the ability of regions at different scales for Smart Renewable Power Provision are drawn, measured by a set of proposed low carbon indicators. The spatially most detailed level reveals the diverse state of the regions with, on the one hand, already around 10% fulfilling the indicator limit of Smart Renewable Power Provision and, on the other hand, regions with no RES-E capacity installed. An algorithm for finding desirable trajectory pathways to a decentralized energy system is introduced, build on the knowledge of the current state of the local power system. Finally, the correlation analysis indicates that for the RES-E extension not only socioeconomic but also land use characteristics are important factors to consider.

Keywords: Smart renewable energy; Hot spot analysis; Renewable energy integration; Land use; Resource complementarities (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916309710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:184:y:2016:i:c:p:1038-1050

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.07.031

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1038-1050