EconPapers    
Economics at your fingertips  
 

Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels

Giovanni Di Lullo, Hao Zhang and Amit Kumar

Applied Energy, 2016, vol. 184, issue C, 413-426

Abstract: Growing concern over climate change has created pressure on the oil and gas industry to reduce their greenhouse gas emissions (GHG). There have been multiple well-to-tank+combustion (WTT+C) studies that have examined various crude oils in an attempt to determine their GHG emission intensities. The majority of these studies published deterministic point estimates with a limited sensitivity analysis. Due to the variation in results between studies and the lack of uncertainty analysis the usefulness of these studies to policy makers and industry representatives is limited. The goal of this study is to expand on the previous literature by identifying a range of WTT+C emissions for crude oils from Saudi Arabia, Venezuela, and Iran. First, the previously published FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in Conventional Crude Oils (FUNNEL-GHG-CCO) was used to perform a WTT+C analysis of the crudes GHG emissions. Then a Monte Carlo simulation was carried out using existing literature to define input distributions for the key inputs. The resulting gasoline WTT+C GHG emission ranges are 113.6–138.5 (Venezuela High Steam), 101.6–109.9 (Venezuela Low Steam), 101.1–109.2 (Sirri, Iran), and 95.3–99.9gCO2eq/MJ (Saudi Arabia). This result indicates that even when uncertainty is taken into account the Venezuelan high steam crude clearly has higher emissions than the Saudi Arabia crude. The results of this study will give policy makers and industry representatives a better understanding of how the WTT+C GHG emissions vary between various crude oils.

Keywords: Life cycle assessment; Conventional crude; GHG emissions; Transportation fuel; Monte Carlo simulation; Uncertainty analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916314519
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:184:y:2016:i:c:p:413-426

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.10.027

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:413-426