EconPapers    
Economics at your fingertips  
 

Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems

Yanjun Huang, Amir Khajepour, Farshid Bagheri and Majid Bahrami

Applied Energy, 2016, vol. 184, issue C, 605-618

Abstract: This paper presents several robust model predictive controllers that improve the temperature performance and minimize energy consumption in an automotive air-conditioning/refrigeration (A/C-R) system with a three-speed and continuously-varying compressor. First, a simplified control-oriented model of the A/C-R system is briefly introduced. Accordingly, a discrete Model Predictive Controller (MPC) is designed based on the proposed model for an A/C-R system with a three-speed compressor. A proper terminal weight is chosen to guarantee its robustness under both regular and frost conditions. A case study is conducted under various heating load conditions. Two hybrid controllers are made, which combine the advantages of both the on/off controller and discrete MPC such that they will be more efficient under any ambient heating condition. In addition, a continuous MPC is developed for systems with continuous variable components. Finally, the experimental and simulation results of the new controllers and the conventional on/off controller are provided and compared to show that the proposed controllers can save up to 23% more energy.

Keywords: Air-conditioning/refrigeration systems; Frosting; Discrete MPC; Robust MPC; Hybrid controller (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313885
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:184:y:2016:i:c:p:605-618

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.086

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:605-618