EconPapers    
Economics at your fingertips  
 

Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball

Hongzhi Cui, Waiching Tang, Qinghua Qin, Feng Xing, Wenyu Liao and Haibo Wen

Applied Energy, 2017, vol. 185, issue P1, 107-118

Abstract: Phase change materials (PCMs) have great potential for applications in energy efficient buildings. In this study, an innovative method of macro-encapsulation of PCM using hollow steel balls (HSB) was developed and the thermal and mechanical performance of PCM-HSB concrete was examined. The macro-encapsulation system (PCM-HSB) was attached with a metal clamp (c) for better mechanical interlocking with the mortar matrix. The latent heat of PCM-HSB-c that can be acquired is approximately 153.1J/g, which can be considered to rank highly among PCM composites. According to the self-designed thermal performance evaluation, the PCM–HSB-c concrete panel is capable of reducing and deferring the peak indoor temperature. The indoor temperature of the room model using PCM-HSB-c panels was significantly lower than the ones with normal concrete panels by a range of 3–6%. Furthermore, the test room using a higher PCM-HSB-c content demonstrated a greater ability to maintain a lower indoor room temperature for a longer period of time during heating cycles. In consideration of the mechanical properties, thermal performance and other aspects of cost factors, 50% and 75% PCM-HSB-c replacement levels are recommended in producing concrete.

Keywords: Macro-encapsulated phase change material; Hollow steel ball; Performance improvement; Elevated temperature test; Thermal performance; Thermal energy storage capacity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315161
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:107-118

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.10.072

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:107-118