EconPapers    
Economics at your fingertips  
 

Approaches for the optimized control of solar thermally driven cooling systems

Björn Nienborg, Antoine Dalibard, Lena Schnabel and Ursula Eicker

Applied Energy, 2017, vol. 185, issue P1, 732-744

Abstract: Small scale (solar-) thermally driven cooling systems suffer from two important drawbacks: firstly, the systems usually offer no means of adapting the chilling capacity to the actual load; secondly constantly running pumps and fans lead to high auxiliary electricity consumption even when the available driving and cooling water temperatures only allow a reduced chilling capacity. To solve these problems a generic approach for controlling the main parasitic electrical devices – the cooling water pump and the heat rejection fan - as a function of the actual boundary conditions was developed. Different variants of control strategies are analyzed in different system configurations under a variety of climates and load conditions by means of dynamic system simulations in TRNSYS. The most typical combinations of ab- and adsorption chillers with dry cooler and wet cooling tower are covered. The results show that capacity modulation can be realized well by this approach. Additionally electricity savings of up to 25% can be achieved for reasonably sized systems compared to a reference control strategy with fixed pump speed and fixed cooling water set temperature. Yet it becomes obvious that the concrete savings depend strongly on the system configuration and boundary conditions.

Keywords: Solar cooling; Control strategies; Absorption chiller; Adsorption chiller; Heat rejection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315537
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:732-744

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.10.106

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:732-744