Experimental study on the performance of a ZEBRA battery based propulsion system for urban commercial vehicles
Ottorino Veneri,
Clemente Capasso and
Stanislao Patalano
Applied Energy, 2017, vol. 185, issue P2, 2005-2018
Abstract:
Fleets of commercial vehicles for delivery services in urban areas constitute road transportation means which are required to run relatively short distances and to respect anti-pollution laws commonly imposed by many municipalities. For this kind of commercial applications, high efficiency and eco-friendly electric propulsion systems offer an interesting alternative to thermal engines. This paper is focused on the analysis of such solution, by presenting experimental results obtained with a ZEBRA battery based propulsion system, designed to power a specific urban unit within the category of electric commercial vehicles. A novel contribution is added to the relevant literature concerning battery based electric powertrains for road vehicles. The main novelty consists in a wide range of experimental results and performance analysis carried out with reference to the real behavior of both the whole propulsion system and each main component, when powering the commercial vehicle, on the urban part of the NEDC (New European Driving Cycle) standard driving cycle, at different slopes. The experimental results, expressed through electrical and mechanical parameters, are initially evaluated by means of a quasi-static numerical model of the electric powertrain and then experimentally verified with the support of a 1:1 scale laboratory dynamic test bench. The procedure followed and presented in this paper definitely demonstrates the good design and performance, obtained for the evaluated propulsion system, in satisfying the real energy and power requirements, specific of an urban use for delivery commercial vehicles, in terms of daily autonomy and slopes. The collections of experimental results, analyzed in the paper, represent in addition a useful set of data for simulation in order to build, verify and improve models in their outputs.
Keywords: ZEBRA batteries; Electric vehicles; Electric drives; Dynamic test bench (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630112X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:2005-2018
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.124
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().