EconPapers    
Economics at your fingertips  
 

Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel

Sheng Zhang and Yong Cheng

Applied Energy, 2017, vol. 187, issue C, 675-688

Abstract: The existing ejector cooling system with thermal pumping effect (S-ECSTPE) operates without consuming electricity, but has waste problems of thermal energy and chilling water. An innovative ECSTPE with double evacuation chambers in parallel (D-ECSTPE) can effectively mitigate these waste problems. The high-pressure vapor with high temperature (HPVHT) in one evacuation chamber, which is directly chilled by chilling water in the S-ECSTPE, is reused in the D-ECSTPE to pre-pressurize refrigerant in the other evacuation chamber. Performance improvement mechanisms of the D-ECSTPE are explained from both thermal energy transfer and mass transfer of the HPVHT. Case studies showed that the severer the waste problems of the S-ECSTPE, the greater COP increase and reduction in chilling water demand achieved by the D-ECSTPE. Also, the D-ECSTPE performed well with environment-friendly refrigerants (e.g., R1234yf, R161 and R1234ze(E)), which were unsuitable for the S-ECSTPE due to severe waste problems. Compared to the S-ECSTPE, the D-ECSTPE with R1234yf, R134a, R161, R1234ze(E), R1234ze(Z), R1233zd(E), R365mfc and R141b increased the COP by at least 49.44%, 26.30%, 22.33%, 19.38%, 4.39%, 3.55%, 2.14% and 1.77%, respectively, and reduced the chilling water demand by at least 29.77%, 18.04%, 15.55%, 13.86%, 3.36%, 2.76%, 1.72% and 1.37%, respectively. In all cases, the D-ECSTPE reduced the wasted thermal energy and chilling water of the S-ECSTPE by at least 65.83% and 81.14%, respectively, and its exergy efficiency was generally superior to those of the S-ECSTPE and conventional ejector cooling system. An additional increase in the number of paralleled evacuation chambers can further improve the system performance.

Keywords: Performance improvement; Ejector cooling; Thermal pumping effect; Double paralleled evacuation chambers; Environment-friendly refrigerants (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631710X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:187:y:2017:i:c:p:675-688

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.11.080

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:675-688