EconPapers    
Economics at your fingertips  
 

An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones

Yueer He, Meng Liu, Thomas Kvan and Shini Peng

Applied Energy, 2017, vol. 187, issue C, 717-731

Abstract: This paper examines naturally ventilated buildings in hot and humid summer zones and proposes an air enthalpy-based energy conservation rating method with an emphasis on the combined thermal comfort-ventilation parameters, particularly the impact of humidity and human adaptations on thermal comfort. The new method starts with energy flow analysis to a naturally ventilated room and assessment of thermal comfort accounting for the humidity of the naturally ventilated room as well as the occupants’ adaptability, differing from the PMV models and widely-used adaptive models adopted in existing rating methods. It contributes to designing a well-performed naturally ventilated building by analysing the interplay of climate elements, design features, indoor thermal comfort, and energy consumption for cooling in hot-humid climates. It also gives the access to rate the influence of an estimated energy saving due to natural ventilation on the energy system at a district or national scale. The proposed method is then applied to a naturally ventilated office located in three cities within this particular climatic region of China. The results indicate that natural ventilation is an effective way to improve thermal comfort while maintaining a low cooling energy consumption in hot-humid summer zones. Using natural ventilation could help reduce cooling energy demand by 10–30% compared to not using natural ventilation. Its energy saving potential is strongly affected by the enthalpy of outdoor air, followed by airflow rate. Then, a contrast comparison between the new method based on energy balance and Chinese indoor thermal comfort standard and the conventional method coupling adaptive ASHRAE standard-55 thermal comfort model with sensible heat balance model is carried out. The contrast results validate the considerable impacts of humidity on energy balance analysis and thermal comfort rating. It points out the new method makes improvement of the maximum energy saving potential of naturally ventilated buildings prediction.

Keywords: Total heat balance of a room; The first law of thermodynamics; Air enthalpy; Thermal comfort; Humidity issue (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916317299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:187:y:2017:i:c:p:717-731

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.11.098

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:717-731