Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor
Matthias Schmidt,
Andrea Gutierrez and
Marc Linder
Applied Energy, 2017, vol. 188, issue C, 672-681
Abstract:
The reversible reaction of calcium hydroxide (Ca(OH)2) to calcium oxide (CaO) and water vapor is well known in the context of thermochemical energy storage. Cheap material costs, a theoretically very high energy density and the potentially wide temperature range of the reaction imply that the storage system could be beneficial for many high temperature processes. For example the system could be applied to store and reutilize industrial waste heat or as an alternative storage solution in future concentrated solar power plants.
Keywords: Thermochemical energy storage; Calcium hydroxide; Calcium oxide; Operation modes; Low vapor pressures; Thermal charging and discharging (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916316087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:188:y:2017:i:c:p:672-681
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.023
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().