Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage
Long Jiang,
Jiao Gao,
Liwei Wang,
Ruzhu Wang,
Yiji Lu and
Anthony Paul Roskilly
Applied Energy, 2017, vol. 190, issue C, 1029-1038
Abstract:
Novel bi-salt and tri-salt composite sorbents are developed, and expanded natural graphite treated with sulfuric acid (ENG-TSA) is integrated as the matrix with different mass ratios for heat transfer intensification. Tri-salt composite sorbent is mainly composed of Manganese chloride (MnCl2), Calcium chloride (CaCl2) and Ammonium chloride (NH4Cl) whereas bi-salt composite sorbent comprises Calcium chloride (CaCl2) and Ammonium chloride (NH4Cl). Sorption characteristics under non-equilibrium condition are investigated and compared with that under equilibrium condition. Results show that the sorption hysteresis can be alleviated by bi-salt composite sorbent and even eliminated by tri-salt composite sorbent. Based on testing results, multilevel sorption thermal energy storage (STES) is analyzed, which can greatly enhance the versatility and working reliability. It is also worth noting that the highest energy storage density of reaction heat is 1802kJ/kg and 1949kJ/kg for tri-salt and bi-salt composite sorbents, respectively. Performance of bi-salt composite sorbent is relatively close to the theoretical data, which indicates three main stages. Comparably, performance of tri-salt composite sorbent shows continuous variation with the increment of reaction temperature. The promising multilevel STES reveals the great potential for energy utilization of variable heat source such as solar power when compared with conventional heat storage methods.
Keywords: Multi-salt; Non-equilibrium; Multilevel; Sorption thermal energy storage (STES) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:1029-1038
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.01.019
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().