Generation expansion planning with high share of renewables of variable output
Sérgio Pereira,
Paula Ferreira and
A.I.F. Vaz
Applied Energy, 2017, vol. 190, issue C, 1275-1288
Abstract:
This study presents a new generation expansion planning (GEP) incorporating the effects of renewables variable generation on thermal power plants efficiency. An hourly unit commitment problem was integrated in the GEP problem with the overall goal of supporting the selection of future mixes of power plants through long term planning. The problem resulted in a binary mixed integer non-linear cost optimization model. The model application was demonstrated for the design of electricity plans for a 10year planning period under different CO2 assumptions for a thermal, hydroelectric and wind power system. The results were compared with the ones obtained using a traditional GEP model, which assumed average operating conditions for thermal power plants. The scenario analysis shows that the impact of renewables variability on the performance of thermal power plants and on the generation expansion planning is non-negligible. The results suggest that assuming average operating conditions can result on the underestimation of the system costs which highlights the importance of the proposed integrated model to strategic decision making.
Keywords: Generation expansion planning; Unit commitment; Renewable energy sources; Optimization problem (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917300338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:1275-1288
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.01.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().