Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions
T.R. Ayodele,
A.S.O. Ogunjuyigbe and
B.B. Adetokun
Applied Energy, 2017, vol. 190, issue C, 339-353
Abstract:
This paper presents a methodology to determine and select a suitable excitation capacitance value for a wind-driven self-excited reluctance generator (WDSERG), which would produce a constant output voltage under changing wind speed and connected load. A steady state mathematical model of WDSERG is developed from the dynamic model of self-excited reluctance generator (SERG) and phasor diagram. This model is used to develop an algorithm that searches for the optimum excitation capacitance which produces a desired output voltage level for any given wind speed and load within the operating limits of the WDSERG. Different scenarios of variable speed, load and power factor are considered and an optimal capacitance value is determined and selected for each cases. Published experimental data was utilised to validate the developed model. The results show that there is a distinct capacitance value that would produce a constant output voltage under any given operating conditions of wind speed and terminal load. The procedure presented can form a basis for the design of a variable excitation capacitor to maintain a constant output voltage under varying wind speed and load, which will invariably offer an effective and low-cost solution for output voltage control of WDSERG.
Keywords: Self-excited reluctance generator; Wind speed; Constant output voltage; Excitation capacitance; Load (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916319201
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:339-353
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.137
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().