EconPapers    
Economics at your fingertips  
 

Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage

Fabrisio Gomez-Garcia, Daniel Gauthier and Gilles Flamant

Applied Energy, 2017, vol. 190, issue C, 510-523

Abstract: This paper presents an analytical model of a multistage fluidised bed heat exchanger for particle-based solar power plants. This model was developed as an applicable design tool for similar devices. It enables a parametric analysis of the heat exchanger performance to be conducted as a function of the operating specifications of the plant power block, the heat exchanger geometry and the fluidised bed properties, among other parameters. A 50MWe solar plant with a two-stage Rankine cycle operating at 535°C was used to analyse the heat exchanger design. The results indicate that for the proposed application, improvements in the thermal behaviour mostly depend on the addition of preheating and superheating stages. The most efficient configuration includes seven fluid bed stages with a thermal efficiency of 99.3% and a global heat exchange efficiency of 49.7%. With such a configuration, a maximum solid temperature difference of 387°C may be achieved between the heat exchanger entrance and its exit for particle inlet temperature of 650°C, thus enabling the best utilization of the thermal energy stored in the solid particles.

Keywords: Heat exchanger; Fluidised bed; Multistage; Solar power plant; Storage (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916319237
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:510-523

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.12.140

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:510-523