Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage
Fabrisio Gomez-Garcia,
Daniel Gauthier and
Gilles Flamant
Applied Energy, 2017, vol. 190, issue C, 510-523
Abstract:
This paper presents an analytical model of a multistage fluidised bed heat exchanger for particle-based solar power plants. This model was developed as an applicable design tool for similar devices. It enables a parametric analysis of the heat exchanger performance to be conducted as a function of the operating specifications of the plant power block, the heat exchanger geometry and the fluidised bed properties, among other parameters. A 50MWe solar plant with a two-stage Rankine cycle operating at 535°C was used to analyse the heat exchanger design. The results indicate that for the proposed application, improvements in the thermal behaviour mostly depend on the addition of preheating and superheating stages. The most efficient configuration includes seven fluid bed stages with a thermal efficiency of 99.3% and a global heat exchange efficiency of 49.7%. With such a configuration, a maximum solid temperature difference of 387°C may be achieved between the heat exchanger entrance and its exit for particle inlet temperature of 650°C, thus enabling the best utilization of the thermal energy stored in the solid particles.
Keywords: Heat exchanger; Fluidised bed; Multistage; Solar power plant; Storage (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916319237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:510-523
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.140
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().