EconPapers    
Economics at your fingertips  
 

A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter

Min Ye, Hui Guo and Binggang Cao

Applied Energy, 2017, vol. 190, issue C, 740-748

Abstract: Obtaining accurate parameters, state of charge (SoC) and capacity of a lithium-ion battery is crucial for a battery management system, and establishing a battery model online is complex. In addition, the errors and perturbations of the battery model dramatically increase throughout the battery lifetime, making it more challenging to model the battery online. To overcome these difficulties, this paper provides three contributions: (1) To improve the robustness of the adaptive particle filter algorithm, an error analysis method is added to the traditional adaptive particle swarm algorithm. (2) An online adaptive SoC estimator based on the improved adaptive particle filter is presented; this estimator can eliminate the estimation error due to battery degradation and initial SoC errors. (3) The effectiveness of the proposed method is verified using various initial states of lithium nickel manganese cobalt oxide (NMC) cells and lithium-ion polymer (LiPB) batteries. The experimental analysis shows that the maximum errors are less than 1% for both the voltage and SoC estimations and that the convergence time of the SoC estimation decreased to 120s.

Keywords: Electric vehicles; Lithium-ion battery; Particle swarm filter; Improved adaptive particle filter; State of charge (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916319171
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:190:y:2017:i:c:p:740-748

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.12.133

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:740-748