Thermal regulation impact of green walls: An experimental and numerical investigation
Erdem Cuce
Applied Energy, 2017, vol. 194, issue C, 247-254
Abstract:
Green walls can be basically defined as climbing plants grown either directly against, or on support structures integrated to external building walls. Similar to other types of green infrastructure, they are in the centre of interest owing to their remarkable benefits such as reducing internal building temperatures, mitigating building energy consumption and facilitating urban adaptation to a warming climate. In this research, thermal regulation feature of green wall systems is experimentally and numerically investigated through a case study conducted in the Jubilee Campus of University of Nottingham. Internal wall temperatures are measured time-dependently for different cases and the results are compared with those of ordinary walls for a reliable and realistic approach. Different sky conditions are also considered within the scope of this research as an independent variable. Experimental results are verified by numerical models carried out in Ecotect. The results reveal that an average of 2.5°C reduction in internal wall temperature can be achieved via green walls with about 10cm thick climbing vegetation of Hedera helix, which is very promising.
Keywords: Green wall systems; Thermal impact; Temperature; Solar irradiance; Energy saving (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:194:y:2017:i:c:p:247-254
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.079
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().