Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction
Neda Mohammadi and
John E. Taylor
Applied Energy, 2017, vol. 195, issue C, 810-818
Abstract:
Urbanization is causing a significant increase in the amount, diversity, and complexity of human activities, all of which have a substantial impact on energy consumption. Current approaches to predicting energy demand at different spatiotemporal levels are functions of the characteristics of either individual buildings or cities and their occupancy levels, or are data-driven, typically taking the form of sensor-based modeling. Nevertheless, accounting for both the spatial and temporal effects of heterogeneous human behavior patterns on buildings’ energy use at the city level remains a challenge. In this paper, we examine the temporal manifestation of the fluctuations of energy use in urban buildings driven by spatial mobility patterns of the population. We then present an urban-level spatiotemporal approach for predicting buildings’ energy demand. Using a full year of individual positional records from an online social networking platform (Twitter), we introduce a multivariate autoregressive model in reduced principle component analysis space to create monthly predictions of residential building electricity demand generated across 801 spatial divisions that account for 68% of the electricity used by buildings in the City of Chicago, through a spatial autoregressive model. This model represents an important step forward, incorporating the spatiotemporal energy use fluctuations of urban population activities to create more reliable predictions of demand in future cities.
Keywords: Energy flux; Energy prediction; Human mobility; Spatiotemporal demand; Urban energy system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302805
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:195:y:2017:i:c:p:810-818
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.03.044
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().