A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery
M. Magdalena Santos-Rodriguez,
Antonio Flores-Tlacuahuac and
Victor M. Zavala
Applied Energy, 2017, vol. 198, issue C, 145-159
Abstract:
Over 50% of the heat generated in industry is in the form of low-grade heat (with operating temperatures below 370°C). Recovering heat from these sources with standard Rankine cycles (using water as working fluid) is inefficient and expensive. Organic working fluids have become an attractive alternative to mitigate these inefficiencies. In this work, we address the problem of designing flexible multi-component organic fluids capable of withstanding variability in heat source temperatures and efficiencies of individual cycle equipment units. The design problem is cast as a nonlinear stochastic optimization problem and we incorporate risk metrics to handle extreme variability. We show that a stochastic optimization framework allows us to systematically trade-off performance of the working fluid under a variety of scenarios (e.g., inlet source temperatures and equipment efficiencies). With this, it is possible to design working fluids that remain robust in a wide range of operational conditions. We also find that significant flexibility of the working fluid can be obtained by using optimal concentrations as opposed to using single component mixtures. We also find that state-of-the-art nonlinear optimization solvers can handle highly complex stochastic optimization problems that incorporate detailed physical representations of the system.
Keywords: Design; Organic mixtures; Rankine cycle; Low-temperature; Uncertainty (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917304403
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:198:y:2017:i:c:p:145-159
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.04.047
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().