Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird
Jakub Jurasz and
Bartłomiej Ciapała
Applied Energy, 2017, vol. 198, issue C, 35 pages
Abstract:
In order to slow climate change, economies need to quickly move away from finite energy sources and towards using low-carbon energy systems. However, the integration of non-dispatchable wind and solar sources comes with additional costs and can make the energy market unusual and unpredictable. Specifically, the presence of variable renewable energy sources makes it harder to accurately forecast energy demand. This paper is a first step in presenting a novel approach to overcoming the inherent variability of photovoltaics (PV) by combining them with a run-off-river (ROR) power plant. A mixed integer mathematical model has been developed and applied to simulate the operation of a PV–ROR hybrid energy source coupled with the national power system. Simulations demonstrate various configurations of parameters and their impact on the objective function which was to maximize the volume of energy from PV and hydropower used to cover energy demand, while ensuring that neither energy deficits nor energy surpluses exceed 5% of energy demand. Our analysis indicates that an ROR power plant with relatively small pondage is capable of subsidizing the varying energy output of the PV system. Besides conducting a simulation and optimization, this paper suggests an approach to smoothing the energy exchange with the grid based on fixed volumes of energy which should be delivered during daylight and nighttime hours.
Keywords: Variable renewable energy source; Hybrid power source; Mixed integer mathematical programming; Demand curve variability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (49)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917304427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:198:y:2017:i:c:p:21-35
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.04.042
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().