A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds
Yongqiang Luo,
Ling Zhang,
Xiliang Wang,
Lei Xie,
Zhongbing Liu,
Jing Wu,
Yelin Zhang and
Xihua He
Applied Energy, 2017, vol. 199, issue C, 293 pages
Abstract:
The glazing façade is embraced by architects, but this configuration may result in huge energy consumption. This research proposed a new double skin façade using photovoltaic (PV) blinds as a shading device (named PVB-DSF), which could realize multi-function of power generation, solar penetration reduction and flexible daylighting control. The purpose of this comparative study is to demonstrate the superb thermal performance of PVB-DSF. Experimental rig was built at hot-summer and cold-winter zone of China. The first stage comparative study was conducted to evaluate system thermal performance under the effects of ventilation modes, PV-blind angle and PV-blind spacing. The second stage study was conducted to compare thermal performance between PVB-DSF and standard DSF. A validated numerical model was used to describe standard DSF. The results suggested the operation of natural ventilation mode and indicated the evident influence of PV-blind spacing on system performance. The comparison study further demonstrated that PVB-DSF can save about 12.16% and 25.57% of energy in summer compared with conventional DSF with and without shading blinds. The insulation performance of PVB-DSF is shown by its daily average heat transfer coefficient which was as low as 2.247.
Keywords: Double skin façade; Photovoltaic blinds; Thermal performance; Solar heat gain; Comparative study (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917305202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:199:y:2017:i:c:p:281-293
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.05.026
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).