A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand
Mafalda C. Silva,
Isabel M. Horta,
Vítor Leal and
Vítor Oliveira
Applied Energy, 2017, vol. 202, issue C, 386-398
Abstract:
Urban form is an important driver of energy demand and therefore of GHG emissions in urban areas. Yet, research on urban form and energy remains sectorial and hasn’t been able to deliver a full understanding of the impact of the physical structure of cities upon their energy demand. Most common approaches feature engineering models in buildings, and statistical models in transports. This study aims at contributing to the characterization of the link between urban form and energy considering altogether three distinct energy uses: ambient heating and cooling in buildings, and travel. A high-resolution methodology is proposed. It applies GIS to provide the analysis with a spatially-explicit character, and neural networks to model energy demand based on a set of relevant urban form indicators. The results confirm that the effect of urban form indicators on the overall energy needs is far from being negligible. In particular, the number of floors, the diversity of activities within a walking reach, the floor area and the subdivision of blocks evidenced a significant impact on the overall energy demand of the case study analyzed.
Keywords: Urban form; Energy demand; Model; Artificial neural networks; GIS (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917306177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:386-398
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.05.113
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().