EconPapers    
Economics at your fingertips  
 

Modeling technological change and its impact on energy savings in the U.S. iron and steel sector

Nihan Karali, Won Young Park and Michael McNeil

Applied Energy, 2017, vol. 202, issue C, 447-458

Abstract: Market penetration of energy-efficient technologies can be estimated using energy optimization models that minimize cost; however, such models typically estimate the minimum cost of optimal pathways under a certain set of non-dynamic assumptions, so technology penetrations determined for the long-term do not fully respond to changing circumstances or costs. In this study, investment costs of energy-efficient technologies are modeled dynamically in the Industrial Sector Energy-Efficiency Model (ISEEM) using a technological learning formula. Results from 24 energy-efficient technologies – 14 existing, 10 emerging – selected from the United States (U.S.) iron and steel sector show that when technological learning is incorporated into the model, total energy consumption of this sector is expected to decrease by 13% (180 PJ) in 2050 compared to energy consumption in a non-learning scenario. Average energy intensity of the steel production improves from 12.3GJ/t in the non-learning scenario to 10.7GJ/t in the learning scenario in 2050. This decrease represents a cost savings of US$1.6 billion and a carbon dioxide emissions reduction potential of 14.9 billion tonnes. Results discussed in this paper focus on the U.S. iron and steel sector, but the proposed framework can be applied to study new technology development in any other industrial processes and regions.

Keywords: Energy optimization models; Learning curve; Dynamic cost; Energy-efficient technologies; Endogenous technological learning (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917307225
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:202:y:2017:i:c:p:447-458

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.05.173

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:447-458