EconPapers    
Economics at your fingertips  
 

Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy

Sergio Rech, Simone Zandarin, Andrea Lazzaretto and Christos A. Frangopoulos

Applied Energy, 2017, vol. 204, issue C, 241 pages

Abstract: A diesel-electric propulsion system is generally used in large scale ships to allow a free placement of Internal Combustion Engines (ICEs), to acoustically decouple engines and hull, and reduce total weight and volume. On long voyages, the speed of a vessel can be more or less constant. Thus, to a first approximation, it can be considered that the engines operate most of the time at steady-state conditions. On this basis, Organic Rankine Cycle (ORC) systems can be conveniently installed aboard to generate additional electric power by recovering ICEs waste heat and increase in turn the overall system efficiency. The ICEs-ORC combined cycle system has to be designed properly to maximize the work production and guarantee at the same time a stable operation during both transient and steady-state working conditions.

Keywords: Waste heat recovery; Organic Rankine Cycle; Off-design dynamic modelling; Optimal control strategy; LNG carrier (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917308425
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:204:y:2017:i:c:p:221-241

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.06.103

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:221-241