Investigation and performance study of a dual-source chemisorption power generation cycle using scroll expander
Yiji Lu,
Anthony Paul Roskilly,
Ke Tang,
Yaodong Wang,
Long Jiang,
Ye Yuan and
Liwei Wang
Applied Energy, 2017, vol. 204, issue C, 979-993
Abstract:
Development of novel heat recovery system attracts ever increasing attentions to convert wasted heat into useful energies. This paper reports the study of a novel dual-source chemisorption power generation cycle using scroll expander to recover dual heat sources. The proposed chemisorption power generation system contains four adsorption beds and two expansion machines for simultaneously and continuously producing electricity by recovering dual-source low grade heat energy such as solar energy and industrial waste heat into electricity. The system performance using nine Metal Chlorides-Ammonia working pairs are studied to identify the suitable operational conditions of the system using scroll expander for power generation. Results indicate that SrCl2 as the LTS can achieve the highest thermal efficiency of the bottom part (LTS-exp2-HTS) ranging from 11% to 7%. MnCl2-SrCl2 is suitable to be used under the first heat source temperature ranging from 200 to 250°C and second heat source temperature about 100°C with the overall thermal efficiency around 10%. The average specific energy of the system under the suggested working conditions can be as high as 102kJ/kg(salts) in the upper cycle and 82kJ/kg(salts) in the bottom cycle. The dynamic system performance evaluation is conducted by using the integrated adsorption mathematical model and scroll expander simulation model. Results shows that for a system using 25.2kg MnCl2 and 18.12kg SrCl2, the average electricity under the first heat source temperature at 220°C is about 300W within 30 min of upper cycle time. And the bottom cycle can produce average 500W electricity within 22.5min of bottom cycle time under the second heat source temperature at 160°C.
Keywords: Chemisorption power generation; Scroll expander; Dual source; Electricity; Thermal efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917302155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:204:y:2017:i:c:p:979-993
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.02.068
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().