EconPapers    
Economics at your fingertips  
 

A self-learning algorithm for coordinated control of rooftop units in small- and medium-sized commercial buildings

Xiangyu Zhang, Manisa Pipattanasomporn and Saifur Rahman

Applied Energy, 2017, vol. 205, issue C, 1034-1049

Abstract: With the advent of the smart grid, demand response (DR) has been implemented in many electric utility control areas to reduce peak demand in buildings during grid stress conditions. However, small- and medium-sized commercial buildings typically do not deploy a building energy management (BEM) system due to high costs of commercially available solutions. Thus, their participation in DR events implies manual control and shutting down major building loads (e.g., air conditioning systems) without considering occupant comfort. With rapid development of Internet of Things (IoT) technologies, some cost-effective IoT-based BEM systems have become available. Based on such systems, this paper presents an algorithm to automatically coordinate the operation of rooftop units (RTUs) in small- and medium-sized commercial buildings, thereby meeting the specified power limit (kW) during a DR event while taking into account occupant comfort. The proposed algorithm has been designed to intelligently learn building thermal properties using coarse-grained indoor temperature data from thermostats, thus avoiding the deployment of sophisticated sensors network. A mixed-integer linear programming model has been utilized to determine an optimal RTU control strategy during a DR event. The peak load shedding performance of the proposed strategy has been tested in an office building in Blacksburg, VA, USA. The experimental result demonstrates that the building could achieve the required peak load reduction and the computation time required by the proposed algorithm is less than 5min. This implies that with the proposed algorithm a building is capable of responding to a DR signal with a short notice, providing valuable demand-side resources for electricity capacity and ancillary markets.

Keywords: Demand response (DR); Peak load management; RTU coordination; Thermal comfort; IoT-based building energy management system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731111X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1034-1049

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.093

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1034-1049