EconPapers    
Economics at your fingertips  
 

Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation

Bei Li, Robin Roche, Damien Paire and Abdellatif Miraoui

Applied Energy, 2017, vol. 205, issue C, 1244-1259

Abstract: Microgrids are small-scale power systems with local generation, storage systems and load demands, that can operate connected to the main grid or islanded. In such systems, optimal components sizing is necessary to make the system secure and reliable, while minimizing costs. In this paper, a stand-alone microgrid considering electric power, cooling/heating and hydrogen consumption is built. A unit commitment algorithm, formulated as a mixed integer linear programming problem, is used to determine the best operation strategy for the system. A genetic algorithm is used to search for the best size of each component. The influence of three factors (operation strategy, accuracy of load and renewable generation forecasts, and degradation of fuel cell, electrolyzer and battery) on sizing results is discussed. A 1-h rolling horizon simulation is used to check the validity of the sizing results. A robust optimization method is also used to handle the uncertainties and evaluate their impact on results.

Keywords: Multi-energy; Microgrid; Sizing; Unit commitment; Evolutionary algorithm; Degradation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (61)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917311595
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:1244-1259

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.142

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:1244-1259