EconPapers    
Economics at your fingertips  
 

Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm

Kun Wang, Ya-Ling He, Xiao-Dai Xue and Bao-Cun Du

Applied Energy, 2017, vol. 205, issue C, 399-416

Abstract: The extremely non-uniform solar flux distribution in the solar power tower plant can badly cause some crucial problems for the solar receiver such as the local hot spot, the thermal stress, and the thermal deformation. Homogenization of the solar flux distribution is an effective method to avoid these problems, and has become an important research topic. The objective of the present study is to homogenize the solar flux distribution on the inner surfaces within the cavity receiver while keeping the optics loss as low as possible by replacing the conventional single-point aiming strategy with optimal multi-point aiming strategies. Multi-objective optimizations of the aiming strategy for the solar power tower with cavity receivers are performed by using the non-dominated sorting genetic algorithm. The distribution of the aiming points on the cavity aperture and the allocation of the aiming points for each heliostat are optimized simultaneously. The following conclusions can be made: (1) The uniformity of the solar flux distribution on the aperture does not always signify the uniformity of the solar flux distribution on the inner surfaces, where the later one is what we are truly concerned about. Therefore, the optimization of the aiming strategy should take charge of the solar flux distribution on the inner surfaces rather than on the aperture. (2) The multi-objective optimization can provide the trade-off between the non-uniformity of the solar flux distribution and the optics loss in the form of Pareto optimal fronts. (3) The optimal aiming strategies provided by the multi-objective optimization can significantly homogenize the solar flux distribution on the inner surfaces within the cavity at a minimum cost of optics loss. (4) For the optimal aiming strategies at all time except the noon, there exists a west-east asymmetry of the aiming point distribution on the aperture. Moreover, the asymmetry gets less obvious as the time gets closer to the noon.

Keywords: Solar power tower; Multi-point aiming strategy; Solar flux distribution; Uniformity; Optics loss; Non-dominated sorting genetic algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917309698
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:399-416

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.07.096

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:399-416