An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings
Lai Jiang,
Runming Yao,
Kecheng Liu and
Rachel McCrindle
Applied Energy, 2017, vol. 205, issue C, 440-452
Abstract:
In the UK, buildings contribute about one third of the energy-related greenhouse gas emissions. Space heating and cooling systems are among the biggest energy consumers in buildings. This research aims to develop a novel Building Energy Management System (BEMS) to reduce the energy consumption of the heating, ventilation and air-conditioning (HVAC) system while fulfilling each occupant’ thermal comfort requirement. This paper presents a newly developed novel method, Epistemic-Deontic-Axiologic (EDA) Agent-based solution to support the Energy Management System meeting the dual targets of occupant thermal comfort and energy efficiency. The multi-agent solutions are applied to the BEMS. The problem decomposition method is used to define the architecture of the system. The Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop the rational local and personal agents inside the system. These EDA-based agents select their optimal action plan by considering the occupants’ thermal sensations, their behavioural adaptations and the energy consumption of the HVAC system. The Newly-developed personal thermal sensation models and group-of-people-based thermal sensation models generated by support vector machine (SVM) based algorithms are applied to evaluate the occupants’ thermal sensations. These models are developed from the data collected in a real built environment. Simulation results prove that the newly-developed BEMS can help the HVAC system reduce the energy consumption by up to 10% while fulfilling the occupants’ thermal comfort requirements.
Keywords: Building Energy Management System (BEMS); Rational agent; Epistemic, Deontic, Axiologic (EDA) agent model; Support vector machine (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917309534
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:205:y:2017:i:c:p:440-452
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.07.081
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().