EconPapers    
Economics at your fingertips  
 

Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell

Shuai Luo, Akshay Jain, Anibal Aguilera and Zhen He

Applied Energy, 2017, vol. 206, issue C, 879-886

Abstract: Biohythane is a renewable energy fuel composed of methane and hydrogen gas at a certain ratio. Microbial electrolysis cells (MECs) have been employed to produce biohythane but the composition of the produced gas is not well controlled. Herein, an innovative MEC system was developed at a large scale of 19L to investigate biohythane production affected by operational factors. The goal was to understand the interaction between operation and performance towards the development of effective strategies for controlling biohythane composition. To achieve this goal, the performance of this MEC system was studied by varying the key operational factors including anolyte recirculation rate, external resistance, and hydraulic residence time (HRT). It was found that the optimized operational condition for this MEC system included the anolyte recirculation rate of 800mLmin−1, external resistance of 1 Ω, and HRT of 24h. This condition led to the biohythane production of 0.64±0.06Lday−1 with 16.5% H2 proportion and positive net energy recovery of 1.52±0.19kWhday−1. The ANOVA test indicated that the anolyte recirculation rate significantly impacted the methane production rate while the external resistance strongly affected the proportion of hydrogen gas in biohythane. HRT had a minor effect on the biohythane composition but could significantly influence organic removal rate. This is the first study that attempted to use operational factors to control biohythane composition, and its results will provide important implications to formulate control strategies for biohythane production and to scale up MEC systems towards practical applications.

Keywords: Microbial electrolysis cell; Biohythane composition; Operational strategy; Energy recovery and efficiency; Bioenergy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917312266
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:206:y:2017:i:c:p:879-886

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.08.241

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:879-886