Experimental investigation of a two-phase closed thermosyphon charged with hydrocarbon and Freon refrigerants
Limin Ma,
Linlin Shang,
Dan Zhong and
Zhongli Ji
Applied Energy, 2017, vol. 207, issue C, 665-673
Abstract:
Two-phase closed thermosyphons (TPCTs) are simple, efficient, and low cost heat exchangers. They have been explored for use in the renewable energy resource utilization marker and low grade thermal energy heat recovery systems. Freon R134a has been extensively used in refrigeration systems and researched as a working fluid of TPCTs; however; it has high global warming potential and operating pressure. In this paper, an experimental investigation of the performance of TPCTs charged with eight working fluids: R134a, R601, R245fa, R600a, R1234ze, R152a, R245fa/R152a, and R601/R245fa have been carried out. The experimental results showed that R245fa/R152a offered the best performance in maximum heat transfer rate. R134a outperformed the other pure working fluids, while R600a and R1234ze had close performances to that of R134a. R245fa showed marginal improvement at higher operating temperatures. The predictions of six evaporation heat transfer coefficients (HTCs) correlations, including Imura, Shiraishi, Labuntsov, Kutateladze, Cooper, and Rohsenow were compared with the experimental results. In the five constant coefficients and powers correlations, the Shiraishi and Cooper correlations had superior accuracy. The coefficients and powers of the Rohsenow correlations fitted based on the experimental data, while they had the best accuracy. Nusselt and Hashimoto-Kaminaga correlations were chosen to predict the condensation HTCs. Both of them tend to over-predict the condensation HTCs in low heat fluxes while under-predicting in high heat fluxes. The experimental results had greater agreement with Hashimoto and Kaminaga correlations.
Keywords: Two-phase closed thermosyphon; Performance evaluation; Working fluid; Heat transfer coefficient (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917308541
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:207:y:2017:i:c:p:665-673
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.06.100
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().