EconPapers    
Economics at your fingertips  
 

Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm

Wei-Hsin Chen, Po-Hua Wu and Yu-Li Lin

Applied Energy, 2018, vol. 209, issue C, 223 pages

Abstract: The purpose of this study is to investigate the output power and efficiency of a TEG system using waste heat from heat pipes, and then optimize its performance. The TEG material is Bi0.4Sb1.6Te3 and its figure-of-merit (ZT) is 1.18 at room temperature. The predictions indicate that a longer length of the elements has greater power output and efficiency based on a fixed heat flux on the hot side surface, whereas a shorter length has greater output power based on a fixed temperature difference. The geometry of the TEG is designed through a multi-objective genetic algorithm (MOGA) to maximize its efficiency. When the temperature difference is fixed at 40 °C, the output power and efficiency of the TEG with optimization is increased by about 51.9% and 5.4%, compared to the TEG without optimization. Once the impedance matching, namely, the internal resistance is equal to the external load resistance, is used, the output power can be further enhanced by about 3.85–4.40%. When the heat flux is fixed at 20,000 Wm−2 along with the temperature difference of 40 °C, the output power and efficiency of a pair of elements can be increased to 7.99 mW and 9.52%, respectively. These results are much higher than those reported in other studies. Accordingly, it is concluded that the MOGA is a powerful tool to design the geometry of a TEG for maximizing its performance and real applications in industry.

Keywords: Thermoelectric generator; Output power and efficiency; Heat pipes; Optimization; Multi-objective genetic algorithm (MOGA); Impedance matching (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:211-223

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.094

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:211-223