EconPapers    
Economics at your fingertips  
 

Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances

Sander van der Stelt, Tarek AlSkaif and Wilfried van Sark

Applied Energy, 2018, vol. 209, issue C, 266-276

Abstract: The emergence of Decentralized Energy Resources (DERs) and rising electricity demand are known to cause grid instability. Additionally, recent policy developments indicate a decreased tariff in the future for electricity sold to the grid by households with DERs. Energy Storage Systems (ESS) combined with Demand Side Management (DSM) can improve the self-consumption of Photovoltaic (PV) generated electricity and decrease grid imbalance between supply and demand. Household Energy Storage (HES) and Community Energy Storage (CES) are two promising storage scenarios for residential electricity prosumers. This paper aims to assess and compare the technical and economic feasibility of both HES and CES. To do that, mathematical optimization is used in both scenarios, where a Home Energy Management System (HEMS) schedules the allocation of energy from the PV system, battery and the grid in order to satisfy the power demand of households using a dynamic pricing scheme. The problem is formulated as a Mixed Integer Linear Programming (MILP) with the objective of minimizing the costs of power received from the grid. Data from real demand and PV generation profiles of 39 households in a pilot project initiated by the Distribution System Operator (DSO) ’Enexis’ in Breda, the Netherlands, is used for the numerical analysis. Results show that the self consumption of PV power is the largest contributor to the savings obtained when using ESS. The implementation of different ESS reduces annual costs by 22–30% and increases the self-consumption of PV power by 23–29%. Finally, a sensitivity analysis is performed which shows how investment costs of ESS per kWh are crucial in determining the economic feasibility of both systems.

Keywords: Self-consumption; Energy management systems; Demand side management; Photovoltaic; Energy storage systems; Mixed integer linear programming (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (77)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315337
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:266-276

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.10.096

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:266-276