EconPapers    
Economics at your fingertips  
 

Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques

Santiago Díaz, José A. Carta and José M. Matías

Applied Energy, 2018, vol. 209, issue C, 455-477

Abstract: Various models based on measure-correlate-predict (MCP) methods have been used to estimate the long-term wind turbine power output (WTPO) at target sites for which only short-term meteorological data are available. The MCP models used to date share the postulate that the influence of air density variation is of little importance, assume the standard value of 1.225 kg m−3 and only consider wind turbines (WTs) with blade pitch control.

Keywords: Support vector machine; Artificial neural network; Random forest; Wind turbine power curve; Wind turbine power output; Air density (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315866
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:455-477

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.11.007

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:455-477