Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques
Santiago Díaz,
José A. Carta and
José M. Matías
Applied Energy, 2018, vol. 209, issue C, 455-477
Abstract:
Various models based on measure-correlate-predict (MCP) methods have been used to estimate the long-term wind turbine power output (WTPO) at target sites for which only short-term meteorological data are available. The MCP models used to date share the postulate that the influence of air density variation is of little importance, assume the standard value of 1.225 kg m−3 and only consider wind turbines (WTs) with blade pitch control.
Keywords: Support vector machine; Artificial neural network; Random forest; Wind turbine power curve; Wind turbine power output; Air density (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315866
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:455-477
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.11.007
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().