An integrated systemic method for supply reliability assessment of natural gas pipeline networks
Huai Su,
Jinjun Zhang,
Enrico Zio,
Nan Yang,
Xueyi Li and
Zongjie Zhang
Applied Energy, 2018, vol. 209, issue C, 489-501
Abstract:
A systematic method is developed for supply reliability assessment of natural gas pipeline networks. In the developed method, the integration of stochastic processes, graph theory and thermal-hydraulic simulation is performed accounting for uncertainty and complexity. The supply capacity of a pipeline network depends on the unit states and the network structure, both of which change stochastically because of stochastic failures of the units. To describe this, in this work a capacity network stochastic model is developed, based on Markov modeling and graph theory. The model is embedded in an optimization algorithm to compute the capacities of the pipeline network under different scenarios and analyze the consequences of failures of units in the system. Indices of supply reliability and risk are developed with respect to two aspects: global system and individual customers. In the case study, a gas pipeline network is considered and the results are analyzed in detail.
Keywords: Natural gas network; Reliability of supply; Failure analysis; Uncertainty analysis; Consequence analysis; Graph theory (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917315568
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:209:y:2018:i:c:p:489-501
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.10.108
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().