EconPapers    
Economics at your fingertips  
 

Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage

Haiyue Yang, Yazhou Wang, Qianqian Yu, Guoliang Cao, Rue Yang, Jiaona Ke, Xin Di, Feng Liu, Wenbo Zhang and Chengyu Wang

Applied Energy, 2018, vol. 212, issue C, 455-464

Abstract: Phase change materials applied in the thermal insulation of building or storage system are beneficial to slow down internal temperature fluctuation and decrease energy consumption. Visible temperature change can provide convenience for people's production and life. In this work, the thermochromic delignified wood composite phase change materials (TCDWs) composed of thermochromic (TC) compound and delignified wood (DW) are fabricated by vacuum-assisted impregnation method. Various techniques are applied to characterize mechanical and thermal properties of TCDWs. Results indicate that TCDWs exhibit suitable phase change temperature, large latent heat, good thermal reliability, as well as excellent thermal stability and mechanical properties. More importantly, TCDWs have excellent reversible thermochromic ability and visibly show the phase change progress and temperature by color change from dark blue to off-white. The thermal insulation ability of TCDWs can reduce heat flow and heat exchange between inside and outside environment, maintaining the internal temperature for longer time. The largest absorption capacity of DW is 65%, which is 15% more than that of pristine wood (PW). The excellent reversible thermochromic, thermal and mechanical properties of TCDWs have great potential in thermal energy storage applications including thermal insulation, decoration, furniture, storage and building energy conservation.

Keywords: Phase change materials; Reversible thermochromic ability; Thermal insulation ability; Delignified wood (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:455-464

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.006

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:455-464