Process integration of a multiperiod sugarcane biorefinery
Cássia M. Oliveira,
Leandro V. Pavão,
Mauro A.S.S. Ravagnani,
Antonio J.G. Cruz and
Caliane B.B. Costa
Applied Energy, 2018, vol. 213, issue C, 520-539
Abstract:
Process integration in sugarcane biorefineries allows reducing steam consumption. As a consequence, the bagasse surplus can be diverted to second generation ethanol production. Furthermore, sugarcane plants can vary the production of ethanol and electricity, depending on the demand. For those reasons, equipment present in the plant might be required to operate under different conditions. This study presents the energy integration of a sugarcane biorefinery. A Mixed Integer Nonlinear Programming (MINLP) optimization model is proposed to solve the problem of synthesizing a Heat Exchanger Network (HEN) able to periodically operate under the distinct conditions required in the biorefinery, i.e., a multiperiod HEN. For solving the MINLP problem, a hybrid metaheuristic approach was used, which combines Simulated Annealing and Rocket Fireworks Optimization. The proposed strategy achieved lower HEN total annualized cost (TAC) when compared with the project energy integration that is commonly found in Brazilian plants. This reduction in TAC, in particular in utilities demand, allows the surplus bagasse to be available for the most suitable application: produce 2G ethanol or more electricity.
Keywords: Sugarcane biorefinery; 1G/2G ethanol; Multiperiod Heat Exchanger Network; Mixed integer nonlinear programming; Simulated annealing; Rocket Fireworks Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917316008
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:213:y:2018:i:c:p:520-539
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.11.020
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().