EconPapers    
Economics at your fingertips  
 

Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation

Ahmed Amine Hachicha, Ivette Rodríguez and Chaouki Ghenai

Applied Energy, 2018, vol. 214, issue C, 152-165

Abstract: Direct Steam Generation (DSG) is one of the most promising alternatives for parabolic trough solar plants to replace the synthetic oil and reduce the electricity cost. The focus of this work is to develop a comprehensive optical and thermo-hydraulic model for the performance prediction of DSG process under real operating conditions. Pressure drop and heat transfer characteristics are determined considering the effect of the non-uniform heat flux distribution due to the concentration of the sunlight. A numerical-geometrical method based on ray trace and finite volume method techniques is used to determine the solar flux distribution around the absorber tube with high accuracy. A heat transfer model based on energy balance is applied to predict the thermal performances of the different flow regimes in the DSG loop. The thermo-hydraulic behavior of the different DSG sections i.e. preheating, evaporation and superheating is investigated under different operating conditions. The validity of the model has been tested by being compared with experimental data from DISS test facility and other available models in the literature. The study also presents a comparative study of the effect of different parameters on the thermal gradient around the absorber tube. The analysis shows that the highest thermal gradient is occurring in the superheating section with a high risk of thermal bending and a potential damage risk. The model is also capable to evaluate the efficiency of a DSG loop for different conditions and help to take the appropriate control strategies to avoid flow instabilities in the DSG rows.

Keywords: Direct Steam Generation; Parabolic trough; Tow phase flow model; Thermal gradient; Efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:214:y:2018:i:c:p:152-165

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.054

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:214:y:2018:i:c:p:152-165