A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting
Chaoshun Li,
Zhengguang Xiao,
Xin Xia,
Wen Zou and
Chu Zhang
Applied Energy, 2018, vol. 215, issue C, 144 pages
Abstract:
Wind speed forecasting plays an important role in estimating the power produced from wind farms. However, because of the non-linear and non-stationary characteristics of the wind speed time series, it is difficult to model and predict such series precisely by traditional wind speed forecasting models. In this paper, a novel hybrid modelling method is proposed, in which time series decomposition, feature selection, and basic forecasting model are combined in a synchronous optimisation framework. In this method, the above-mentioned modelling factors, which affect model performance, could make a concerted effort to improve the model. Specifically, variational mode decomposition, the Gram–Schmidt orthogonal, and extreme learning machine, are optimized synchronously by gravitational search algorithm in the proposed hybrid short-term wind speed forecasting model. First, variational mode decomposition is employed to decompose the original wind speed time series into a set of modes and into one bias series. Subsequently, the Gram–Schmidt orthogonal is used to select the important features. Next, the set of modes are forecasted using the ELM. Finally, the key parameters of the models in three stages are optimized synchronously by gravitational search algorithm. Seven data sets from the Sotavento Galicia wind farm and two wind farms in China have been adopted to evaluate the proposed method. The results show that the proposed method achieves significantly better performance than the traditional signal forecasting models both on one-step and multi-step wind speed forecasting with at least 40% average performance promotion over all the seven competitors.
Keywords: Wind speed forecasting; Variational mode decomposition; Gravitational search algorithm; Extreme learning machine; Gram–Schmidt orthogonal; Synchronous optimisation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:131-144
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.094
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().