Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China
Xi Chen and
Hongxing Yang
Applied Energy, 2018, vol. 215, issue C, 145-158
Abstract:
This paper mainly focuses on investigating the influence of weather conditions on the sensitivity analysis and optimization of a typical passively designed high-rise residential building. A holistic passive design approach combining a variance-based factor prioritizing and surrogate model based multi-objective optimization was previously proposed to explore the green building solution in the hot and humid climate of Hong Kong. The design approach is further extended for application into a broader spectrum of climates across the mainland of China, including the severe cold zone, cold zone, hot summer cold winter zone, temperate zone as well as hot summer warm winter zone. The relative weight analysis is first compared with the Fourier Amplitude Transformation Analysis (FAST) in prioritizing the weighting of design inputs for different climatic zones. The relative weight analysis is then proved a feasible alternative sensitivity analysis method when its corresponding multiple linear regression (MLR) model can achieve good prediction performance. Furthermore, a tuning program in R is developed to improve the prediction performance of surrogate models with the Support Vector Machine (SVM) algorithm under above climatic zones. The model fitting performance with SVM is proved to be greatly improved by modifying the Sigma and C parameters. Finally, optimum design options under the five climatic zones are discussed in relation to the outdoor thermal, ventilation and solar radiation conditions. This research explored the applicability of the proposed passive design optimization approach in diverse climates, and can therefore prompt decision-makers’ endorsement as a national green building design tool in the early planning stage.
Keywords: Surrogate model; Weather conditions; Passive design; Sensitivity analysis; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:145-158
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.099
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().