EconPapers    
Economics at your fingertips  
 

Projecting battery adoption in the prosumer era

Edward Barbour and Marta C. González

Applied Energy, 2018, vol. 215, issue C, 356-370

Abstract: Solar photovoltaic (PV) has the potential to make an important contribution to global sustainability, however, the misalignment between solar production and residential demand presents challenges for widespread PV adoption. Combining PV and storage is one way that this challenge can be overcome. In this work, we use one year of smart meter data from 369 consumers in three different US regions and calculate their economic benefits from both PV and coupled PV-battery systems. We consider a range of different electricity pricing schemes from the consumer regions, including both Feed-In-Tariff (FIT) and Net-Energy-Metering (NEM) policies. Significantly, our work uses real demand data, real PV generation data and optimizes each individual consumer’s battery operation to minimize their electricity bill. Furthermore, we study the effect of batteries on consumer self-sufficiency, which is important because increasing self-sufficiency is a primary motivating factor behind battery adoption. We find that PV is profitable for the majority of consumers with most current pricing scenarios but PV-battery systems are always less profitable. However, batteries can provide very significant increases in self-sufficiency and we find that a majority of consumers can exceed 70% self-sufficiency with a 20 kW h battery and a PV system that produces the equivalent of their consumption. This is compared to an average self-sufficiency of 35% with PV only. Finally, recognizing that a number of factors could lead to profitable batteries in future, we study the sensitivity of battery profitability to future electricity prices in a FIT scenario, also accounting for future decreases in PV and battery costs. We find that if PV-battery systems are to become better investments than PV-only for the majority of consumers, retail electricity prices above $0.40/kW h and FIT rates below $0.05/kW h are a likely requirement.

Keywords: Energy storage; Residential batteries; Rooftop PV; Battery economics; Prosumer self-sufficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300618
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:356-370

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.056

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:356-370