EconPapers    
Economics at your fingertips  
 

Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis

Elpida Piperopoulos, Emanuela Mastronardo, Marianna Fazio, Maurizio Lanza, Signorino Galvagno and Candida Milone

Applied Energy, 2018, vol. 215, issue C, 512-522

Abstract: It is here investigated the effect of the addition of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) during the precipitation of Mg(OH)2 on structural, morphological and physical properties of the resulting hydroxide. The thermochemical behaviour as heat storage material of the final samples is investigated. Mg(OH)2 is precipitated from a solution containing Mg(NO3)2 precursor at pH 11.5, using NH4OH as base, at T = 25 °C. CTAB concentration varies in the range 0.5–20.0 mM. For comparison a sample of Mg(OH)2 is prepared in absence of surfactant. The results obtained show that, at the above synthesis conditions, exists an optimum CTAB concentration value (2.0 mM) which (i) promotes the formation of well separated Mg(OH)2 particles, (ii) enhances specific surface area, (iii) lowers the hydroxide mean particle diameter and (iv) increases the bulk density likely due to the peculiar stacked configuration of hydroxide particles. As main result, Mg(OH)2 prepared at the optimum CTAB concentration exhibits the highest volumetric stored/released heat capacity, ∼560 MJ/m3, almost two times higher than that measured over Mg(OH)2 prepared in absence of CTAB. Cyclic experiments evidence an excellent stability of the sample up to 13 dehydration/hydration reactions.

Keywords: Magnesium hydroxide; Cetyl trimethyl ammonium bromide; Thermochemical heat storage; Concentrated solar power plants (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301727
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:512-522

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.047

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:512-522